longitude bounds derivations
- longitude ranges from midpoints - symbol - description - unit - variable name - \(\lambda(i)\) - longitude - \(degE\) - longitude {:,longitude} - \(\lambda^{B}(i,l)\) - longitude boundaries (\(l \in \{1,2\}\)) - \(degE\) - longitude_bounds {:,longitude,2} - The pattern : for the dimensions can represent {time}, or no dimension at all. \begin{eqnarray} \lambda^{B}(1,1) & = & \frac{3\lambda(1) - \lambda(2)}{2} \\ \lambda^{B}(i,1) & = & \frac{\lambda(i-1) + \lambda(i)}{2}, 1 < i \leq N \\ \lambda^{B}(i,2) & = & \lambda^{B}(i+1,1), 1 \leq i < N \\ \lambda^{B}(N,2) & = & \frac{3\lambda(N) - \lambda(N-1)}{2} \end{eqnarray}- This formula applies if the harp option - regrid_out_of_boundsis set to- nanor to- extrapolate. If the option is set to- edgethen the first and last boundary value are set to the midpoints (\(\lambda^{B}(1,1) = \lambda(1)\), \(\lambda^{B}(N,2) = \lambda(N)\)).