CENTRE FOR DISCRETE MATHEMATICS AND COMPUTING

School of Computer Science & Electrical Engineering

and Department of Mathematics,
The University of Queensland, QLD 4072

Title:

Author:
Date:
Version:

Technical Report #14

ACE for Amateurs (Version 3.001)

Colin Ramsay
April 4, 2001
draft (incomplete)



i



Contents

Contents

List of figures

1

List of tables

Introduction

1.1 Administrivia . . . . . ..o
1.2 Code . . . . . . e
Background

2.1 Terminology . . . . . . . . . ..
2.2 Notation . . . . . . . e
2.3 History . . . . . .

ACE Level 2:
an interactive interface

3.1 Enumeration mode & style . . . . . ... Lo
3.2 Predefined strategies . . . . . . . ... Lo o

ACE Level 1:
a core wrapper

ACE Level 0:
the core enumerator

Examples

Al Getting started . . . . . .. oL o
A.2 Emulating Sims . . . . . .. oL
A3 Rowfilling . . . . . . . . ...
A.4 Equivalent presentations . . . . . .. .. ... L.
A5 Deduction queues . . . . . . ..
A.6 Large enumerations . . . . . . . ... ...
A7 Looping . . . . . ..
A8 Useof st . . . . . o

A9 Useof cy,nc,ccandrc . ... ... ... ... .. ... ... .

il

iii
vii

viii

= W w W = =

(24



B Command summary 21

B.1 add genlerators] / sg : <word list> ; ... ... ........ 22
B.2 add rellators] / rl : <relation list> ; . .. .. .. ... ... 22
B3 aep : 1..7 ; . o 22
B.4 ai / alter i[nput] : [<filename>] ; . .. ... ......... 23
B.5 ao / alter ol[utput] : [<filename>] ; . . . .. ... .. ..... 23
B.6 asl[is] : [0/11 ; . . . . . . . . . 23
B.7 beglin] / end / start ; . . . . ... .. ... 24
B.8 bye / exit / qluit] ; . .. . . . . ... ... 24
B.9 cc / coset coincl[idence] : <int> ; . . . . . . . . . .. .. ... 24
B.10 c[factor] / ct[ factor] : [<int>] ; . .. ... . ... ..... 24
B.11 check / redo ; . . . . . . . . . . o 24
B.12 com[paction] : [0..100] ; . . . . . . .. .. .. ... ... .. 24
B.13 cont[inuel ; . . . . . . . . . e 25
B.ld cylcles] ; . . . . . o 25
B.15 ded mo[de] / dmod[e]l : [0..4] ; . ... . . . . .. . .. ..... 25
B.16 ded silze] / dsizl[el : [0/1..] ; . . . . . . . .. . .. ..... 26
B.17 deflault] ; . . . . . . . .. 26
B.18 del genl[erators] / ds : <int 1list> ; . ... ... ... .. ... 26
B.19 del rellators] / dr : <int 1list> ; . . . . . . . . . . . .. ... 26
B.20 d[ump] : [0/1/2[,0/111 ; . . . . . . . . . . 26
B2leasy ; . . . . . . 27
B.22 echo : [0/11 ; . . . . . . . e 27
B.23 enum[eration] / group name : <string> ; . .. ... ....... 27
B.24 fellsch]l : [0/1] ; . . . . . . . . . 27
B.25 f[factor] / fi[ll factor] : [0/1..1 ; . . . . .. .. ... ... 27
B.26 gen[erators] / subgroup genl[erators] : jword list;; ... ... 28
B.27 gr[oup generators]: [<letter list> / <int>] ; . ... .. ... 28
B.28 group relators / rellators] : <relation list> ; .. .. ... 28
B.29hard ;. . . . .. 29

v



B30 RLELP] 5« v o oot e e 29

B.31hlt 5 . .. 29
B.32 ho[le 1imit] : [-1/0..1001 ; . . . . . . . . . . .. ... .. ... 29
B.33 look[ahead] : [0/1..4] ; . . . . . . . . . . . . . . .. ... ... 29
B.34 1oop[ limit] : [0/1..] ; . . . . . . . . . 30
B.35 max[ cosets] : [0/2..1 ; . . . . . . . . . .. ... 30
B.36 mend[elsohn] : [0/1]1 ; . . . . . . . . . . . . . ... ... ... 30
B.37 mess[ages] / mon[itor] : [<int>] ; . ... ... ... ... ... 31
B.38 moldel ; . . . . . . .. 32
B.39nc / normall closurel] : [0/1] ; . . . . . . . . .. . ... .... 32
B.40 no[ relators in subgroup] : [-1/0/1..1 ; . . .. .. ... ... 32
B.41 oo / order[ option] : <int> ; . .. .. .. .. .. .. ... ... 33
B.42 optlions] ; . . . . . . . 33
B.43 par[ameters] ; . . . . . . .. 33
B.44 path[ compression] : [0/1] ; . . . . . .. . ... ... .. .... 33
B.45 pd mol[de] / pmod[e]l : [0/1..3]1 ; . . ... .. .. ... ..... 34
B.46 pd silze] / psizl[el : [0/2/4/8/...1 5 . . . ... ... .. ... 34
B.47 print det[ails] / sr : [0/1..5] ; . . . . . . ... .. .. .... 34
B.48 prlint table]l : [[-1<int>[,<int>[,<int>]111 ; . ... ... .. 34
B49pure clt] ; . . . . . . 35
B.50pure rlt] ; . . . . . . 35
B.51 rc¢ / random coinc[idences]: <int>[,<int>] ; .. ... .. ... 35
B.52 reclover] / contigluous] ; . . ... .. ... ... ........ 35
Bbh3rep : 1..7[,<int>] ; . . ... 35
B.bd restart ; . . . . . ..o 36
B.55 r[factor] / rt[ factor]l : [<int>] ; . .. . . . . .. ... ... 36
B.56 row[ filling] : [0/11 ; . . . . . .. . . . . . .. ... 36
B.57 sc / stabil[ising cosets] : <int> ; . ... ... ..... ... 36
B.58 sims : 1/3/5/7/9 ; . . . . . . . 37
B.59 st[andard tablel ; . . . . . . . . . . . . .. 37



B.60 stat[istics] / stats ; . . . . . . . . .
B.61 style ; . . . . . ..
B.62 subg[roup name] : <string> ; . . .. .. ... ... ... ... ..
B.63 sys[tem] : <string> ; . . . . . . ... . ...
B.64 text : <string> ; . . .. .. ..
B.65 tilme limit] : [-1/0/1..1 ; . . . . . . . . . . . .. ... ... ..
B.66 tw / tracel wordl : <int>,<word> ; . . . . . . . . . . . .. ...
B.67 wol[rkspacel : [<int>[k/m/gll ; . .. . . . . .. ... ... ....
B.68# ... <newline> . . . . . . . . . . . ...

C State machine details

D Abbreviations

References

vi



C.1
C.2
C.3
C4
C.5
C.6
C.7

List of figures

The R/Cstyle . . . . . .. o 40
The R*style. . . . . . . . . .. . . . 41
The Crstyle . . . . . . o o o o 42
The Cstyle . . . . . .o o 43
The Restyle . . . . o 0 o 0 o oo 44
The Rstyle . . . . . 0 o o o 45
The CRstyle . . . . . . . . . o 46

vii



2.1

3.1
3.2

B.1
B.2

List of tables

The coset table for S;/S3

The styles . . . ... ..

The predefined strategies

Possible enumeration results

Possible progress messages

viil



CHAPTER 1

Introduction

ACE is designed to work with partial tables, as well as complete tables exhibiting a
finite index. TBA: Intended user groups ...

ACE is divided into three ‘levels’. The actual enumerator, called the “core enumera-
tor”, is ACE Level 0, while the standard driver for the enumerator, the “core wrapper”,
is ACE Level 1. A stand-alone ‘example’ application, called the “interactive interface”,
is ACE Level 2. To assist those interested in the actual source code, the function and
variable names are prepended with ALO_, AL1_ & AL2_ respectively. ACE also includes
the “proof table” package (PT for short), which can be compiled into the executable
if required. The proof table cuts across the level structure, and can only be used as
part of the interactive interface. Function and variable names of the PT package are
prepended with PT_. TBA: this package ...

TBA: version history, 3.000 vs 3.001, ... TBA: default build ...

1.1 Administrivia

It is assumed that ACE is run on a Unix-box of some description. TBA: how to
compile ...

In order not to clutter-up the body of the text with examples, the bulk of these are
gathered into a separate appendix. These examples illustrate many of the features of
ACE, and can also serve as a source of interesting enumerations. Some are referred
to in the text, but they can all be read independently. ACE script input generating
these examples is available in the ex**x.1in files, as part of the documentation.

1.2 Code

You will note in the source code various sections preceded by a warning comment
containing the DTT acronym. This stands for “debug/test/trace”, and denotes code
that was added temporarily for one reason or another. None of this code should
be active; i.e., it should all be commented out. It does mot form part of the ACE
distribution. Of course, gurus will find this code intriguing, and will probably want
to uncomment it to see what happens!

TBA: The source code is heavily commented, and is considered to be part of the
documentation. Conceptually, coset enumeration is easy, but there are tricky details



and subtle performance issues — you need to read the source code, to experiment, and
to think to appreciate these.



CHAPTER 2

Background

2.1 Terminology

Although ACE can accept either letters or numbers for group generators, we generally
use letters, since these are much easier to understand. (Unless you need more than
26 generators, or are using some form of automatically generated presentation, you
should adopt the same convention.) Lower-case letters denote generators, with in-
verses being denoted by either upper-case letters or negative superscripts; e.g., ABab
and a~'b~'ab are equivalent. We use 1 to denote the identity element and/or the
subgroup (i.e., coset #1).

...scanning, applying, closing. ...dead coset(s), compact(ion).

2.2 Notation

For a subgroup H of a group G, we represent by G/H the set of right cosets of H in
G (not the quotient group of G by H which requires that H be normal in G), i.e.

G/H ={Hz |z € G}.

Two cosets Hx, Hy € G/H are equal, i.e. coincident, if and only if xy~! € H. Also,
any two cosets of G/H are either coincident or disjoint. The cardinality of G/H is
the number of distinct cosets in G/H, and is equal to the index |G : H| of H in G,
if G is finite then |G : H| = |G|/|H]|.

Some standard groups that arise in our examples are:
Sy, the full symmetric group on n letters;

A, the full alternating group on n letters; and
Ch, the cyclic group of order n.

A group G will often be defined via a presentation of the form
(generators | relators).

In this case, the elements of G are words in the generators and the relators are a list
of words that are equivalent to the empty word (i.e. identity element) in G. Actually,
amongst the relators we will also allow relations, which are equations of the form
w; = wy (equivalent to the relator wlwgl), where wy, wy are words in the generators
of G.



TABLE 2.1: The coset table for Sy;/S;

Generators
coset by bo b
04 (Gs) Oy Oy O
O3 (G3b3) O3 O Oy
Oy (G3b3bsy) Oq O3 O
01 (nggbgbl) 02 01 01

2.3 History

The concept of a subgroup, and its cosets, has been known since the beginnings of
group theory. One of the earliest (practical?) uses of cosets seems to have been
by Moore [12], who gives presentations for S,, & A, and proves them correct by, in
effect, counting the n cosets of S,,/S,—1 & A, /An—1. Dickson [5, §264] presents a more
accessible account, and explicitly notes that “these sets form a rectangular table”. To
illustrate this, we paraphrase Dickson’s proof for the case ;.

Let G4 be the abstract group
<b1, bQ, b3 | b%, bg, bg, b1b3 - bgbl, b1b2b1 - bgblbg, beng - b3b2b3>.

Now Sy is generated by the transpositions s; = (12), sy = (23) & s3 = (34). Putting
s; = b;, 1 <1 < 3, we see that these transpositions satisfy the defining relations of
G4. So Sy is a quotient group of Gy, and |G4] > |S,s| = 4! = 24.

That |G4] < 24, and so G4 =2 Sy, is proved by induction. Let G5 be the subgroup
of G4 generated by by & by. (The actual induction is on the b;. For our purposes,
we’ll simply assume that |G3| < 6.) Now consider the cosets O, = G5, O3 = G3bs,
Oy = G3bsby & O1 = G3b3byby. We'll show that these four cosets are merely permuted
by the b;, so that the index |Gy : G3| < 4; hence |G4| < 24, as required.

Obviously, O4b3 = O3, O3by = Oy & O2b; = O;. Since the b; are involutions, then
O3b3 = G3b3bs = G3 = Oy4. Similarly, Osb, = O3 & O1b; = Os. Since by & by generate
G3, then O4b1 = O4b2 = 04. NOW, since b1 & b3 commute, then Ogbl = G3b3b1 =
G3b1b3 = O4b1b3 = O4b3 = 03. Now consider 01b3 = G3b3b2b1b3 = G3b3b2b3b1. Since
babsby = b3bobs, then this can be written as (G3bobsbaby = O4babzbaby = O4b3boby = Oy
In a similar manner, O1by = O; & O3b3 = Os. Our coset table (see Table 2.1) is now
complete, so |Gy : G3| < 4. Note that each b; gives rise to the transposition (0;0;1),
and leaves the other cosets fixed.

The construction of a coset table was systematised and popularised by Todd & Cox-
eter [16]. The first computer implementation was that of Haselgrove in 1953. This,
along with other early implementations, is described by Leech [9]. Detailed accounts
of the techniques used in coset enumeration can be found in [3, 6, 10, 13, 15]. For-
mal proofs of the correctness of various strategies for coset enumeration are given in
(11, 13, 15].



CHAPTER 3

ACE Level 2:
an interactive interface

Level 2 of ACE is a complete, standalone application for generating and manipulating
coset tables. It can be used interactively, or can take its input from a script file. It
is reasonably robust and comprehensive, but no attempt has been made to make it
‘industrial strength’ or to give it any of the features of, say, MAGMA [2] or GAP [14].
Most of its features have been added in response to user requests, and it is assumed
that the user is ‘competent’. One of the primary goals in developing ACE was to
demonstrate how to correctly use ACE Levels 0 & 1; some care is taken to ensure that
the user cannot generate ‘invalid’ tables.

A complete description of all the Level 2 commands is given in Appendix B.

3.1 Enumeration mode & style

The core enumerator takes two arguments, which select the enumeration mode and
style. The mode determines whether or not we retain any existing table information.
Initially, we start with an empty table and use the begin mode (the beg command).
This can be followed by a series of continue and/or redo modes (the cont & redo
commands) which build on or modify the table generated by the begin mode. So
it is possible to do an enumeration in stages, altering the parameters at each stage.
Various interlocks are present to prevent a combination of choices which (potentially)
leads to an invalid table.

The enumeration style is the balance between C-style definitions (i.e., coset table
based, Felsch style) and R-style definitions (i.e., relator based, HLT style), and is
controlled by the ct & rt parameters. The absolute values of these parameters sets
the number of definitions (C-style) or coset applications (R-style) per pass through
the enumerator’s main loop. The sign of these parameters sets the style, and the
possible combinations are given in Table 3.1

In R style all the definitions are made via relator scans; i.e., this is HLT mode. In
C style all the definitions are made in the next empty table slot and are tested in
all essentially different positions in the relators; i.e., this is Felsch mode. In R/C
style we run in R style until an overflow, perform a lookahead on the entire table,
and then switch to CR style. Defaulted R/C style is the default style, and here we
use R/C style with ct:1000 and rt set to approximately 2000 divided by the total



TABLE 3.1: The styles

Rt value Ct value style name

<0 <0 R/C

<0 0 R*

<0 >0 Cr
0 <0 C
0 0 R/C (defaulted)
0 >0 C

>0 <0 Re

>0 0 R

>0 >0 CR

length of the relators, in an attempt to balance R & C definitions when we switch to
CR style. Rc & Cr styles are like R & C styles, except that a single C or R style pass
(respectively) is done after the initial R or C style pass. R* style makes definitions
the same as R style, but tests all definitions as for C style. In CR style alternate
passes of C style and R style are performed, with all definitions tested. The Ct < 0
C style is reserved for future use, and should not be used.

3.2 Predefined strategies

The versatility of ACE means that it can be difficult to select appropriate parameters
when presented with a new enumeration. The problem is compounded by the fact that
no generally applicable rules exist to predict, given a presentation, which parameter
settings are ‘good’. To help overcome this problem, ACE contains various commands
which select particular enumeration strategies. One or other of these strategies may
work and, if not, the results may indicate how the parameters can be varied to obtain
a successful enumeration. The thirteen standard strategies are listed in Table 3.2.

Note that we explicitly (re)set all of the listed enumerator parameters in all of the
predefined strategies, even although some of them have no effect. For example, the fi
value is irrelevant in HLT mode. The idea behind this is that, if you later change some
parameters individually, then the enumeration retains the ‘flavour’ of the last selected
predefined strategy. Note also that other parameters which may affect an enumeration
are left untouched by setting one of the predefined strategies; for example, the values
of max & asis. These parameters have an effect which is independent of the selected
strategy.

Note that, apart from the fel:0 & sims:9 strategies, all of the strategies are distinct,
although some are very similar. Further details of each strategy are contained in their
entry in Appendix B.



TABLE 3.2: The predefined strategies

parameter
strategy path row mend no look com ct rt i pmod psiz dmod dsiz
def n vy n -1 n 10 0 00 3 256 4 1000
easy n vy n 0 n 100 0 1000 1 0 256 0 1000
fel:0 n n n 0 n 10 1000 01 0 256 4 1000
fel:1 n n n -1 n 10 1000 00 3 256 4 1000
hard n vy n -1 n 10 1000 10 3 256 4 1000
hlt n vy n 0 1 10 0 1000 1 0 256 0 1000
pure ¢ n n n 0 n 100 1000 01 0 256 4 1000
pure r n n n 0 n 100 0 1000 1 0 256 0 1000
sims:1 n vy n 0 n 10 0 1000 1 0 256 0 1000
sims:3 n y n 0 n 10 0 -1000 1 0 256 4 1000
sims:H n vy y 0 n 10 0 1000 1 0 256 0 1000
sims:7 n vy y 0 n 10 0 -1000 1 0 256 4 1000
sims:9 n n n 0 n 10 1000 01 0 256 4 1000




CHAPTER 4

ACE Level 1:
a core wrapper

ACE Level 0 is a complete, efficient coset enumerator. However, it is ‘naked’, in the
sense that it expects all its data structures to be correctly setup and it assumes that
it is ‘sensibly’ driven. ACE Level 1 is a simple wrapper for Level 0 which processes
the presentation and the parameters, and sets up the appropriate data structures. It
contains some utility routines to help drive ACE, and it prevents some of the more
obvious errors. Although it has to be used with care, the wrapper is a great deal
easier to drive than the core enumerator, and is its recommended interface.



CHAPTER 5

ACE Level 0:
the core enumerator

TBA: ...



APPENDIX A

Examples

In this appendix we give some examples of ACE runs. A stand-alone discussion of
some of the features of these runs is included, although parts of these runs are men-
tioned in the body of the text, as illustrations of specific features of ACE’s behaviour.
The exx**.in files supplied as part of this documentation can be used to run these
examples, although an example may be presented as if it were generated interac-
tively, and the output may be edited for reasons of space or perspicuity. There may
be minor variations in the exact format of the output, since ACE is continually being
‘improved’. Unless otherwise noted, all parameters are defaulted and the default build
of ACE was used. In multipart runs, note that parameters from an earlier part may
carry across to a later one. Note that some of the examples may require a machine
with a large amount of memory.

A.1 Getting started

This example uses input file ex000.1in, and illustrates the basics of ACE. Note how
the input is generally insensitive to command synonyms, capitalisation, white space,
and : & ; characters. When ACE starts up, it prints out its version, the date & time,
and the name of the host on which it’s running. If we attempt to do an enumeration
immediately we get an error, since the lack of generators means we can’t build the
(empty) coset table.

ACE 3.001 Wed Apr 4 22:35:40 2001

Host information:
name = mango
end;
*% ERROR (continuing with next line)
can’t start (no generators?)

After defining two generators, we can do an enumeration. The default state is not to
echo the presentation or print any messages; only the result line is printed. The group
is free, since there are no relators, and the subgroup is trivial. So the enumeration
overflows.

gr:ab; # A stupid comment

Begin

OVERFLOW (a=249998 r=83333 h=83333 n=249999; 1=337 ¢=0.15; m=249998 t=249998)

10



The sr commands dumps out the presentation and the parameters for the run. All
of these are currently defaulted, apart from those dependent on there being two
(non-involutionary) generators.
sr:1;
#--— ACE 3.001: Run Parameters ---
Group Name: G;
Group Generators: ab;
Group Relators: ;
Subgroup Name: H;
Subgroup Generators: ;
Wo:1000000; Max:249998; Mess:0; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:1; Mend:0; No:0; Look:0; Com:10;
C:0; R:0; Fi:7; PMod:3; PSiz:256; DMod:4; DSiz:1000;

With sr:2 only the Group Name line is printed. Similarly, sr:3, sr:4 and sr:5 print
the Group Relators, Subgroup Name and Subgroup Generators lines, respectively.
sr:2;

Group Name: G;

Next we print out the first part of the table. Note that, as there are no relators,
the table has separate columns for generator inverses. So the default workspace of
1000000 words allows a table of 249998 = 1000000/4 — 2 cosets. As row filling is on by
default, the table is simply filled with cosets in order. Note that a compaction phase
is done before printing the table, but that this does nothing here (the lower-case co
tag), since there are no dead cosets. The coset representatives are simply all possible
freely reduced words, in length plus lexicographic order.

pr:-1,12;
co: a=249998 r=83333 h=83333 n=249999; c=+0.00
coset | a A b B order rep’ve
_______ +_____________________________________________
1| 2 3 4 5
2 | 6 1 7 8 0 a
3| 1 9 10 11 0 A
4 | 12 13 14 1 0 b
5 | 15 16 1 17 0O B
6 | 18 2 19 20 0 aa
7| 21 22 23 2 0 ab
8 | 24 25 2 26 0 aB
9 | 3 27 28 29 0 AA
10 | 30 31 32 3 0 Ab
11 | 33 34 3 35 0O AB
12 | 36 4 37 38 0 ba

We now set things up to do the alternating group on five letters, of order 60. We
turn messaging on, but set the interval high enough so that there will be no progress
messages.

Enum: A_5;

rel: a2, b~3, ababababab;

subgr: trivial;

mess: 1000; start;

11



The presentation and the parameters are echoed, the enumeration is performed, and
then the results of the run are printed. Note that the exponent of the ababababab
word has been correctly deduced, and that a is treated as an involution. So the table
has only three columns now. Definitions are HLT-style, and a total of 76 cosets (incl.
the subgroup) are defined.

#---— ACE 3.001: Run Parameters —--
Group Name: A_5;
Group Generators: ab;
Group Relators: (a)~2, (b)"3, (ab)“5;
Subgroup Name: trivial;
Subgroup Generators: ;
Wo:1000000; Max:333331; Mess:1000; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:1; Mend:0; No:3; Look:0; Com:10;
C:0; R:0; Fi:6; PMod:3; PSiz:256; DMod:4; DSiz:1000;

INDEX = 60 (a=60 r=77 h=1 n=77; 1=3 ¢=0.01; m=66 t=76)

We now use a non-trivial subgroup, and monitor all the actions of the enumerator.

Subgroup Name: C_5 ;
gen:ab;
Monit :1
END;
#---— ACE 3.001: Run Parameters —--
Group Name: A_5;
Group Generators: ab;
Group Relators: (a)~2, (b)"3, (ab)“5;
Subgroup Name: C_5;
Subgroup Generators: ab;
Wo:1000000; Max:333331; Mess:1; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:1; Mend:0; No:3; Look:0; Com:10;
C:0; R:0; Fi:6; PMod:3; PSiz:256; DMod:4; DSiz:1000;

# _________________________________
AD: a=2 r=1 h=1 n=3; 1=1 ¢=+0.00; m=2 t=2
SG: a=2 r=1 h=1 n=3; 1=1 ¢c=+0.00; m=2 t=2
RD: a=3 r=1 h=1 n=4; 1=2 c=+0.00; m=3 t=3
RD: a=4 r=2 h=1 n=5; 1=2 c¢=+0.00; m=4 t=4
RD: a=5 r=2 h=1 n=6; 1=2 ¢=+0.00; m=5 t=5
RD: a=6 r=2 h=1 n=7; 1=2 c=+0.00; m=6 t=6
RD: a=7 r=2 h=1 n=8; 1=2 ¢c=+0.00; m=7 t=7
RD: a=8 r=2 h=1 n=9; 1=2 ¢c=+0.00; m=8 t=8
RD: a=9 r=2 h=1 n=10; 1=2 ¢=+0.00; m=9 t=9
CC: a=8 r=2 h=1 n=10; 1=2 c¢=+0.00; d=0
RD: a=9 r=5 h=1 n=11; 1=2 ¢=+0.00; m=9 t=10
RD: a=10 r=5 h=1 n=12; 1=2 c=+0.00; m=10 t=11
RD: a=11 r=5 h=1 n=13; 1=2 c=+0.00; m=11 t=12
RD: a=12 r=5 h=1 n=14; 1=2 c=+0.00; m=12 t=13
RD: a=13 r=5 h=1 n=15; 1=2 c=+0.00; m=13 t=14
RD: a=14 r=5 h=1 n=16; 1=2 c=+0.00; m=14 t=15
CC: a=13 r=6 h=1 n=16; 1=2 ¢=+0.00; d=0
CC: a=12 r=6 h=1 n=16; 1=2 ¢=+0.00; d=0
INDEX = 12 (a=12 r=16 h=1 n=16; 1=3 ¢=0.00; m=14 t=15)

We now dump out the statistics accumulated during the run. The run had a=12 &
t=15, so there must have been three coincidences (qcoinc=3). Of these, two were

12



primary coincidences (rdcoinc=2). Since t=15, there must have been fourteen coset
definitions; one was during the application of coset #1 (i.e., the subgroup) to the
subgroup generator (apdefn=1), and the remainder during the application of the
cosets to the relators (rddefn=13).

STATistics;
#- ACE 3.001: Level O Statistics -
cdcoinc=0 rdcoinc=2 apcoinc=0 rlcoinc=0 clcoinc=0
xcoinc=2 xcolsl2=4 gcoinc=3
xsavel2=0 s12dup=0 s12new=0
xcrep=6 crepred=0 crepwrk=0 xcomp=0 compwrk=0
xsaved=0 sdmax=0 sdoflow=0
xapply=1 apdedn=1 apdefn=1
rldedn=0 cldedn=0
xrdefn=1 rddedn=5 rddefn=13 rdfill=0
xcdefn=0 cddproc=0 cdddedn=0 cddedn=0
cdgap=0 cdidefn=0 cdidedn=0 cdpdl=0 cdpof=0
cdpdead=0 cdpdefn=0 cddefn=0

Note how the pre-printout compaction phase now does some work (the upper-case CO
tag), since there were coincidences, and hence dead cosets. Note how b/B have been
used as the first two columns, since these must be occupied by a generator/inverse
pair or a pair of involutions. The a column is also the A column, as a is an involution.
(Using asis and inputting the a~2 relator as aa, however, stops ACE from treating
a as an involution and the columns are not reordered. We will see this later.)

print TABLE : -1, 12 ;
CO: a=12 r=13 h=1 n=13; c¢=+0.00
coset | b B a order rep’ve

ba

baB
baBa
baBaB
bab
baBab
baBaba
baBabaB
baBabab

-
O©CONOOTOWPrFL,N

WNWOTOTWOITNOTWW

(=Y
o
—_
N

==

=N

If we define the generator order to be that of the columns, then the table above
is not in canonic form, and the coset representatives are not in order. We now
standardise the table; note the compaction phase before standardisation, although
it does nothing in this particular case. Note how, if we read through the table in
row-major order, new cosets are introduced using the smallest available number, and
that the representatives are now in order and are minimal.

st;
co/ST: a=12 r=13 h=1 n=13; c¢=+0.00

13



pr:-1,12;
co: a=12 r=13 h=1 n=13; ¢=+0.00
coset | b B a order rep’ve

ba

bab

baB
baba
baBa
babaB
babaBa
babaBab
babaBaB

OO NOOTPWN -
~NO OO PO WN
O~NO A PONFP,W

10
11
12

[N
[N

12
12 10
10 11

= =
P NOOOOOUITONNRFPW
NWWWOaoINnOoTolww

We now exit ACE, printing out the version and the date & time again.

q

ACE 3.001 Wed Apr 4 23:09:17 2001

A.2 Emulating Sims

Here we demonstrate the various sims modes, and see if we can duplicate the m (max-
imum active cosets) and t (total cosets defined) values (see the input file ex001.1in).
The ability to do so gives our confidence in the correctness of ACE a large boost. (In
Section A.8, we show how we can use standard and one of ACE’s sims modes to ap-
proximate one of Sims’ even-numbered strategies.) We work with the formal inverses
of the relators and subgroup generators from [15], since definitions are made from the
front in Sims’ routines and from the rear in ACE. We may also have to use the asis
flag, to force the column order (by entering involutions as xx) and to preserve the
relator ordering. We match Sims’ values for R style & R* style (sims:1 & 3) and C
style (sims:9), but may not do so if we use Mendelsohn (sims:5 & 7); this makes
sense, since the order of processing cycled relators is not specified by Sims.

The input and output files for Example 5.2:

gr: r,s,t;

rel: (r"tRR)"-1, (s"rSS)~-1, (t~sTT)"-1;

text: ; ST}

text: ** Sims:1 (cf. 1502/1550) ...; sims:1; end;
text: ** Sims:3 (cf. 673/673) ...; sims:3; end;
text: ** Sims:5 (cf. 1808/1864) ...; sims:5; end;
text: ** Sims:7 (cf. 620/620) ...; sims:7; end;
text: ** Sims:9 (cf. 588/588) ...; sims:9; end;

#--- ACE 3.001: Run Parameters ---
Group Name: G;
Group Relators: rrTRt, ssRSr, ttSTs;
Subgroup Name: H;
Subgroup Generators: ;

14



** Sims:

INDEX

** Sims:

INDEX

** Sims:

INDEX

** Sims:

INDEX

** Sims:
INDEX =

The input and output files for Example 5.3, k£ = &:

gr:
rel:

text:
text:
text:
text:
text:
text:

s Y

1
1
3
1
5
1
7
1
9
1

(cf. 1502/1550)
(a=1 r=2 h=2 n=2; 1
(cf. 673/673)

(a=1 r=2 h=2 n=2; 1
(cf. 1808/1864)
(a=1 r=2 h=2 n=2; 1
(cf. 620/620)

(a=1 r=2 h=2 n=2; 1=3 ¢=0.00;

(cf. 588/588)

(a=1 r=2 h=2 n=2; 1=4 ¢=0.00;

(xx)"-1, (y~3)~-1, ((xy)"7)"-1,
**x Sims:1 (cf. 87254/128562)
*x Sims:3 (cf. 31678/32320)
*x Sims:5 (cf. 99632/178620)
*x Sims:7 (cf. 30108/31365)
*x Sims:9 (cf. 39745/39745)

#--- ACE 3.001: Run Parameters ---
Group Name: G;
Group Relators: XX, YYY, YXYXYXYXYXYXYX, yXYXyXYXyXYXyXYXyXYXyXYXyXYXyXYX;
Subgroup Name: H;
Subgroup Generators: ;

**x Sims
INDEX
**x Sims
INDEX
**x Sims
INDEX
**x Sims
INDEX
**x Sims

:1 (cf. 87254/128562)

3 ¢=0.00;
3 ¢=0.00;

3 ¢=0.01;

m=1502 t=1550)
m=673 t=673)
m=1603 t=1603)
m=615 t=615)

m=588 t=588)

((xyxY)~8)~-1;

ST
.; sims:1; end;
sims:3; end;
.; sims:5; end;
sims:7; end;

*

.
)

.
)

asis:1; sims:

9; end;

10752 (a=10752 r=128563 h=1 n=128563; 1=27 c=0.16; m=87254 t=128562)

:3 (cf. 31678/32320)

10752 (a=10752 r=8005 h=32321 n=32321; 1=10 c=0.13; m=31678 t=32320)

:5 (cf. 99632/178620)

10752 (a=10752 r=168547 h=1 n=168547; 1=24 c=0.24; m=96952 t=168546)

:7 (cf. 30108/31365)

10752 (a=10752 r=5738 h=31673 n=31673; 1=8 c=0.14; m=30420 t=31672)

:9 (cf. 39745/39745)

INDEX = 10752 (a=10752 r=1 h=39746 n=39746; 1=43 c=0.19; m=39745 t=39745)

The input and output files for Example 5.4:

gr: a,b;
(a"8)"-1, (b°7)"-1, ((ab)~2)"-1, ((Ab)~"3)"-1;
(a”2)"-1, (Ab)"-1;
asis:1;

rel:
gen:

text:
text:
text:
text:
text:
text:

#--- ACE 3.001:

>

*k
*k
*k
*k
*k

Sims:1 (cf. 2174/2635)
Sims:3 (cf. 1199/1212)
Sims:5 (cf. 2213/2619)
Sims:7 (cf. 1258/1284)
Sims:9 (cf. 1302/1306)

Group Name: G;
Group Relators: AAAAAAAA, BBBBBBB, BABA, BaBaBa;
Subgroup Name: H;

Subgroup Generators: AA, Ba;

b
b
*
b
b

Run Parameters —--—-

STr;

sims:
sims:
sims:
sims:
asis:

15

O~NOTWwWrHF

we we we we we

end;
end;
end;
end;
sims:9;

end;



*x Sims:1 (cf. 2174/2635)

INDEX = 448 (a=448 r=2636 h=1 n=2636; 1=4 ¢=0.00; m=2174 t=2635)
*x Sims:3 (cf. 1199/1212)

INDEX = 448 (a=448 r=576 h=1213 n=1213; 1=3 ¢=0.01; m=1199 t=1212)
*x Sims:5 (cf. 2213/2619)

INDEX = 448 (a=448 r=2620 h=1 n=2620; 1=4 ¢=0.00; m=2213 t=2619)
*x Sims:7 (cf. 1258/1284)

INDEX = 448 (a=448 r=612 h=1285 n=1285; 1=3 ¢=0.01; m=1258 t=1284)
*x Sims:9 (cf. 1302/1306)

INDEX = 448 (a=448 r=1 h=1307 n=1307; 1=5 ¢=0.00; m=1302 t=1306)

A.3 Row filling

If all definitions are made by applying cosets to relators, then the coset table can
contain holes, either because the form of the relators ‘hides’ one of the generators from
one of the cosets, or because one of the generators is not present in the relators. The
row and mend parameters can be used to deal with these sorts of situations. Consider
the following examples, drawn from [17]; see the input file ex002.in. Note that,
although the row parameter is specifically intended to prevent the table containing
holes, the mend parameter actually yields better enumeration statistics. Note also the
use of the asis parameter to control whether or not the presentation is reduced.

enum:infinite cyclic group; gr:xy; rel:yxyxY;
subgr:self (index 1); gen:x;
asis:1; mess:1000000; pure r; end;

#--- ACE 3.001: Run Parameters —--
Group Name: infinite cyclic group;
Group Generators: xy;
Group Relators: yxyxY;
Subgroup Name: self (index 1);
Subgroup Generators: x;
Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;
As:1; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;
C:0; R:1000; Fi:1; PMod:0; PSiz:256; DMod:0; DSiz:1000;

SG: a=1 r=1 h=1 n=2; 1=1 ¢=+0.00; m=1 t=1
OVERFLOW (a=249992 r=249996 h=1 n=249999; 1=253 ¢=0.19; m=249992 t=249998)

pr:-1,12;
CO: a=249992 r=249990 h=1 n=249993; c=+0.05
coset | X X y Y order rep’ve

_______ +_____________________________________________
1] 1 1 2 0
2 | 4 3 5 1 0y
3 | 2 5 6 4 0o yX
4 | 0 2 3 0 0 yx
5 | 3 6 7 2 0 yy
6 | 5 7 8 3 0 yXy
7 | 6 8 9 5 0 yyy
8 | 7 9 10 6 0 yXyy
9 | 8 10 11 7 0 yyyy
10 | 9 11 12 8 0 yXyyy
11 | 10 12 13 9 0  yyyyy
12 | 11 13 14 10 0 yXyyyy

16



mess:0;

pure r; row:1l; end;

INDEX = 1 (a=1 r=2 h=2 n=2; 1=3 ¢=0.00; m=12 t=17)
pure r; mend:1; end;

INDEX = 1 (a=1 r=2 h=2 n=2; 1=3 ¢=0.00; m=5 t=6)

mess:1000000;
asis:0; pure r; end;
#-—-- ACE 3.001: Run Parameters ---
Group Name: infinite cyclic group;
Group Generators: xy;
Group Relators: xyx;
Subgroup Name: self (index 1);
Subgroup Generators: x;
Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;
C:0; R:1000; Fi:1; PMod:0; PSiz:256; DMod:0; DSiz:1000;

SG: a=1 r=1 h=1 n=2; 1=1 ¢=+0.00; m=1 t=1
UH: a=1 r=2 h=2 n=2; 1=3 c¢=+0.00; m=1 t=1
INDEX = 1 (a=1 r=2 h=2 n=2; 1=3 ¢=0.00; m=1 t=1)

enum:C_3; rel:x"3yxyX~3,y"3xyxY"3; subgr:trivial (index 3); gen:;
asis:1; pure r; end;
#--- ACE 3.001: Run Parameters ---
Group Name: C_3;
Group Generators: xy;
Group Relators: xxxyxyXXX, yyyxyxYYY;
Subgroup Name: trivial (index 3);
Subgroup Generators: ;
Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;
As:1; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;
C:0; R:1000; Fi:1; PMod:0; PSiz:256; DMod:0; DSiz:1000;

OVERFLOW (a=181146 r=38770 h=1 n=249999; 1=32 ¢=0.12; m=181146 t=249998)

pr:-1,16;
CO: a=181146 r=28074 h=1 n=181147; ¢=+0.03
coset | X X y Y order rep’ve

_______ +_____________________________________________
1 2 0 7 0
2 | 3 1 15 0 0 X
3 | 4 2 23 0 0 XX
4 | 12 3 6 5 0 xxx
5 | 35 6 4 0 0 xxxY
6 | 5 0 31 4 0  xxxy
7 | 47 0 8 1 0y
8 | 55 0 9 7 0 yy
9 | 11 10 52 8 0 yyy
10 | 9 0 72 11 0 yyyX
11 | 63 9 10 0 0 yyyx
12 | 20 4 14 13 0  xxxX
13 | 89 14 12 0 0  xxxxY
14 | 13 0 85 12 0  xxxXXy
15 | 101 0 16 2 0 Xy
16 | 109 0 17 15 0 xyy

17



mess:0;

pure r; row:l; end;

INDEX = 3 (a=3 r=468 h=1 n=468; 1=3 ¢=0.00; m=343 t=467)
pure r; mend:1; end;

INDEX = 3 (a=3 r=29 h=29 n=29; 1=3 ¢=0.00; m=21 t=28)

mess:1000000;
asis:0; pure r; end;
#--— ACE 3.001: Run Parameters —--
Group Name: C_3;
Group Generators: xy;
Group Relators: yxy, xyx;
Subgroup Name: trivial (index 3);
Subgroup Generators: ;
Wo:1000000; Max:249998; Mess:1000000; Ti:-1; Ho:-1; Loop:0;
As:0; Path:0; Row:0; Mend:0; No:0; Look:0; Com:100;
C:0; R:1000; Fi:1; PMod:0; PSiz:256; DMod:0; DSiz:1000;

UH: a=3 r=6 h=6 n=6; 1=3 c
INDEX = 3 (a=3 r=6 h=6 n=6;

A.4 Equivalent presentations

TBA: F(2,7), using rep & aep ...

A.5 Deduction queues

TBA: ... (see test009)

A.6 Large enumerations

Suppose that the presentation given is such that the final coset table exceeds the
4 Gbyte limit imposed by 32-bit machines; e.g., an index of 250 x 10% with a 5-
column table and 4 byte integers. We are justified in regarding such an enumeration
as ‘big’, since it will require more than 4 Gbyte of storage no matter how efficiently it
is performed. Of course, even trivial enumerations may exceed this limit if they are
very pathological (see, e.g., [7]). However, we have no (easy) way of knowing whether
or not such enumerations can be done within the 4 Gbyte limit, so we are hesitant to
classify them as big. ACE is 64-bit ‘aware’, and can use more than 4 Gbyte of memory
if it is available. Note however that the number of cosets (i.e., the number of rows in
the coset table) is still limited by the size of a signed int. So the maximum size of a
table is 23! — n cosets, where n is probably 3; one since we can’t actually represent
42147483648, one 